

Periodic Classification of Elements

Definition:

Periodic classification is the arrangement of elements in such a way that elements with similar properties reappear at regular intervals.

Historical Development in Classification

Dobereiner's Triads (1817):

- Elements were grouped into triads (sets of 3).
- The atomic mass of the middle element was nearly the average of the other two.

Example:

Li (7), Na (23), K (39) \rightarrow Mean of Li and K = (7+39)/2 = 23 \approx Na

Newlands' Law of Octaves (1866):

- When elements are arranged in increasing order of atomic masses, every 8th element resembles the first.
- It worked well for lighter elements.

Lothar Meyer's Arrangement:

- Plotted atomic volume vs atomic mass.
- Showed periodic properties are functions of atomic volume.

Mendeleev's Periodic Table (1869):

Based on atomic mass.

- Mendeleev's Periodic Law: "Properties of elements are periodic functions of their atomic masses."
- 8 groups and 7 periods, 63 elements arranged.

Defects:

- No proper position for hydrogen.
- Disrupted order in some elements (e.g., Ar-K).
- No place for isotopes.
- Grouping sometimes separated similar elements or combined dissimilar ones.

Modern Periodic Table (Moseley, 1913)

- Based on atomic number (Z), not atomic mass.
- **Modern Periodic Law**: "Properties of elements are periodic functions of their atomic numbers."

Key Features:

- 18 vertical groups and 7 horizontal periods.
- Elements grouped by outer electronic configuration.
- Period number = highest principal quantum number (n).
- Lanthanides and actinides placed separately.

Block Classification

- **s-block:** Groups 1 and 2 Alkali and alkaline earth metals.
- **p-block:** Groups 13 to 18 Includes non-metals, metalloids, and some metals.
- **d-block:** Groups 3 to 12 Transition elements.
- **f-block:** Lanthanides (Z=58–71), Actinides (Z=90–103) Inner transition elements.

Periodic Properties

1. Atomic Radius

- Distance from nucleus to outermost shell.
- Increases down a group (more shells).
- Decreases across a period (higher nuclear charge).
- Cation radius < atom < anion.
- Isoelectronic species: greater Z → smaller radius.

2. Ionisation Potential (IP)

- Energy required to remove an electron.
- Increases across a period, decreases down a group.
- IP order: s > p > d > f orbitals.
- Group 2 > Group 13; Group 15 > Group 16 due to stability.

3. Electron Affinity (EA)

- Energy released when an atom gains an electron.
- Increases across a period, decreases down a group.
- Cl > F > Br > I (F is small, repulsion reduces EA).

4. Electronegativity

- Tendency to attract electrons in a bond.
- Decreases down a group, increases across a period.
 F > O > Cl ≈ N > Br > C ≈ I > H

Group-Wise Properties

Group IA – Alkali Metals (Li, Na, K, Rb, Cs, Fr):

- Electronic configuration: ns¹
- Very reactive, soft metals, low MP/BP.
- Stored in paraffin; strong reducing agents.
- Form monovalent cations; ionic compounds.
- Flame test: Li-red, Na-yellow, K-pale violet, etc.
- Reactivity: Li < Na < K < Rb < Cs
- Li forms Li₂O, Na forms Na₂O₂, others form superoxides.

Group IIA – Alkaline Earth Metals (Be, Mg, Ca, Sr, Ba, Ra):

- Electronic configuration: ns²
- Be and Mg don't show flame color (high IP).

- Flame colors: Ca-brick red, Sr-crimson, Ba-apple green.
- Hydroxide solubility increases down the group.
- Carbonates are less soluble than IA group.

Group IIIA (B, Al, Ga, In, TI):

- ns²np¹; Oxidation states: +3 and +1 (inert pair effect).
- Boron is metalloid; others are metals.
- Boron → glass industry; Al → thermite process.
- Al is amphoteric.
- Order of oxide basicity: B < Al < Ga < In < Tl

Group IVA (C, Si, Ge, Sn, Pb):

- ns²np²; Oxidation states: +4 and +2 (inert pair effect).
- C forms strong covalent bonds, catenation.
- CO₂ is linear, SiO₂ is a 3D network.
- Hydride stability: CH₄ > SiH₄ > GeH₄ > SnH₄ > PbH₄

Group VA (N, P, As, Sb, Bi):

- ns²np³; half-filled stability.
- Oxidation states: -3, +3, +5
- N shows anomalous properties (no d-orbital).
- N₂: triple bond; hydrides: NH₃ > PH₃ > AsH₃ > SbH₃ (boiling pt)

N forms multiple oxides (NO, N₂O, NO₂, etc.)

Group VIA – Chalcogens (O, S, Se, Te, Po):

- ns²np⁴; Oxidation states: -2, +2, +4, +6
- O₂ is paramagnetic; ozone is an allotrope.
- Acidic character: H₂O < H₂S < H₂Se < H₂Te
- Volatility: H₂O > H₂Te > H₂Se > H₂S

Group VIIA – Halogens (F, Cl, Br, I, At):

- ns²np⁵; show -1 to +7 oxidation states.
- High reactivity and electron affinity.
- Oxidizing power: $F_2 > Cl_2 > Br_2 > l_2$
- HF is least acidic but most stable.

Zero Group - Noble Gases (He, Ne, Ar, Kr, Xe, Rn):

- ns²np⁶ (He is 1s²)
- Inert, monoatomic gases; Xe forms compounds (XePtF₆)
- Uses: He in balloons, Ne in lamps, Ar in bulbs, Rn in cancer therapy.

Transition Elements (d-block)

- Small atomic size, high melting points, variable valency.
- Colored compounds due to d–d transitions.

- Good conductors of heat and electricity.
- Used as catalysts.
- Mn: max oxidation state +7 in KMnO₄.
- $\bullet \quad \text{Ag halides + sodium thiosulfate} \rightarrow \text{used in photography}.$

--- End of Document ---