

Basic Concepts and Interrelations of Work, Power, and Energy

1. Work

Definition:

Work is said to be done when a force is applied on an object and the object moves in the direction of the applied force.

Mathematical Formula: $W = F \times d \times cos(\theta)$

Where:

W = work done (Joule, J)

F = magnitude of force (Newton, N)

d = displacement (meter, m)

 θ = angle between force and displacement direction

Cases:

- If $\theta = 0^{\circ}$, $\cos(\theta) = 1 \rightarrow$ maximum positive work (e.g., pulling a cart)
- If $\theta = 90^{\circ}$, $\cos(\theta) = 0 \rightarrow$ no work (e.g., carrying a bag vertically)
- If $\theta = 180^{\circ}$, $\cos(\theta) = -1 \rightarrow \text{negative work (e.g., friction)}$

2. Power

Definition:

Power is the rate at which work is done or energy is transferred.

Formula: P = W / t

Where:

P = power (Watt, W)

W = work done (Joule)

t = time (second)

1 Watt = 1 Joule / 1 second

Larger Units:

- Kilowatt (kW): 1 kW = 1000 W
- Horsepower (hp): 1 hp = 746 W

3. Energy

Definition:

Energy is the capacity to do work.

Unit: Joule (J), same as work.

It exists in various forms: mechanical, thermal, chemical, electrical, nuclear, etc.

Types of Mechanical Energy

1. Kinetic Energy (K.E.):

Energy possessed by a body due to its motion.

Formula: $KE = (1/2)mv^2$

Where m = mass (kg), v = velocity (m/s)

Example: Moving car, flying bullet.

2. Potential Energy (P.E.):

Energy possessed by a body due to its position or configuration.

Formula: PE = mgh

Where h = height above ground (m), g = acceleration due to gravity (9.8 m/s²)

Example: Water in a dam, compressed spring.

4. Interrelation of Work, Power, and Energy

- Work and energy are scalar quantities and both are measured in joules.
- When work is done on a body, energy is transferred to the body.
- Power describes how quickly the work is done or energy is transferred.
- Energy is the cause and work is the effect: Energy → Work → Power

5. Law of Conservation of Energy

Energy can neither be created nor destroyed; it can only be transformed from one form to another. The total energy of an isolated system remains constant.

Example: In a pendulum, energy transforms between potential and kinetic but total remains constant.

6. Commercial Unit of Energy

1 kilowatt-hour (kWh) = 1000 W \times 3600 s = 3.6 \times 10⁶ J

Used for electricity bills and energy consumption.

7. Solved Numerical Problems

 Q1: Calculate the work done when a force of 10 N moves an object 5 m in the direction of force.

$$W = F \times d = 10 \times 5 = 50 J$$

Q2: A body of mass 2 kg is moving with a speed of 3 m/s. Find its kinetic energy.

$$KE = (1/2)mv^2 = (1/2) \times 2 \times 9 = 9 J$$

• Q3: Find power if 500 J of work is done in 10 seconds.

$$P = W/t = 500 / 10 = 50 W$$

• Q4: Convert 2 kWh into joules.

1 kWh =
$$3.6 \times 10^6$$
 J \Rightarrow 2 kWh = 7.2×10^6 J